Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans.

نویسندگان

  • Brice Enjalbert
  • Deborah A Smith
  • Michael J Cornell
  • Intikhab Alam
  • Susan Nicholls
  • Alistair J P Brown
  • Janet Quinn
چکیده

The resistance of Candida albicans to many stresses is dependent on the stress-activated protein kinase (SAPK) Hog1. Hence we have explored the role of Hog1 in the regulation of transcriptional responses to stress. DNA microarrays were used to characterize the global transcriptional responses of HOG1 and hog1 cells to three stress conditions that activate the Hog1 SAPK: osmotic stress, oxidative stress, and heavy metal stress. This revealed both stress-specific transcriptional responses and a core transcriptional response to stress in C. albicans. The core transcriptional response was characterized by a subset of genes that responded in a stereotypical manner to all of the stresses analyzed. Inactivation of HOG1 significantly attenuated transcriptional responses to osmotic and heavy metal stresses, but not to oxidative stress, and this was reflected in the role of Hog1 in the regulation of C. albicans core stress genes. Instead, the Cap1 transcription factor plays a key role in the oxidative stress regulation of C. albicans core stress genes. Our data show that the SAPK network in C. albicans has diverged from corresponding networks in model yeasts and that the C. albicans SAPK pathway functions in parallel with other pathways to regulate the core transcriptional response to stress.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans.

Previous work has implicated the Hog1 stress-activated protein kinase (SAPK) in osmotic and oxidative stress responses in the human pathogen Candida albicans. In this study, we have characterized the role of Hog1 in mediating these and other stress responses in C. albicans. We provide evidence that a SAPK-dependent core stress response exists in this pathogen. The Hog1 SAPK is phosphorylated an...

متن کامل

Redox Regulation, Rather than Stress-Induced Phosphorylation, of a Hog1 Mitogen-Activated Protein Kinase Modulates Its Nitrosative-Stress-Specific Outputs

In all eukaryotic kingdoms, mitogen-activated protein kinases (MAPKs) play critical roles in cellular responses to environmental cues. These MAPKs are activated by phosphorylation at highly conserved threonine and tyrosine residues in response to specific inputs, leading to their accumulation in the nucleus and the activation of their downstream targets. A specific MAP kinase can regulate diffe...

متن کامل

A single MAPKKK regulates the Hog1 MAPK pathway in the pathogenic fungus Candida albicans.

The Hog1 mitogen-activated protein kinase (MAPK) plays a central role in stress responses in the human pathogen Candida albicans. Here, we have investigated the MAPK kinase kinase (MAPKKK)-dependent regulation of the pathway. In contrast to the Hog1 pathway in Saccharomyces cerevisiae, which is regulated by three MAPKKKs (Ssk2, Ssk22, and Ste11), our results demonstrate that Hog1 in C. albicans...

متن کامل

The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans.

Candida albicans mutants with mutations in mitogen-activated protein (MAP) kinase HOG1 displayed an increased sensitivity to agents producing reactive oxygen species, such as oxidants (menadione, hydrogen peroxide, or potassium superoxide), and UV light. Consistent with this finding, C. albicans Hog1 was activated not only in response to an increase in external osmolarity, as happens with its S...

متن کامل

The MAP kinase signal transduction network in Candida albicans.

MAP (mitogen-activated protein) kinase-mediated pathways are key elements in sensing and transmitting the response of cells to environmental conditions by the sequential action of phosphorylation events. In the fungal pathogen Candida albicans, different routes have been identified by genetic analysis, and especially by the phenotypic characterization of mutants altered in the Mkc1, Cek1/2 and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 17 2  شماره 

صفحات  -

تاریخ انتشار 2006